79 research outputs found

    Salience Assignment for Multiple-Instance Data and Its Application to Crop Yield Prediction

    Get PDF
    An algorithm was developed to generate crop yield predictions from orbital remote sensing observations, by analyzing thousands of pixels per county and the associated historical crop yield data for those counties. The algorithm determines which pixels contain which crop. Since each known yield value is associated with thousands of individual pixels, this is a multiple instance learning problem. Because individual crop growth is related to the resulting yield, this relationship has been leveraged to identify pixels that are individually related to corn, wheat, cotton, and soybean yield. Those that have the strongest relationship to a given crop s yield values are most likely to contain fields with that crop. Remote sensing time series data (a new observation every 8 days) was examined for each pixel, which contains information for that pixel s growth curve, peak greenness, and other relevant features. An alternating-projection (AP) technique was used to first estimate the "salience" of each pixel, with respect to the given target (crop yield), and then those estimates were used to build a regression model that relates input data (remote sensing observations) to the target. This is achieved by constructing an exemplar for each crop in each county that is a weighted average of all the pixels within the county; the pixels are weighted according to the salience values. The new regression model estimate then informs the next estimate of the salience values. By iterating between these two steps, the algorithm converges to a stable estimate of both the salience of each pixel and the regression model. The salience values indicate which pixels are most relevant to each crop under consideration

    Visualizing Image Content to Explain Novel Image Discovery

    Full text link
    The initial analysis of any large data set can be divided into two phases: (1) the identification of common trends or patterns and (2) the identification of anomalies or outliers that deviate from those trends. We focus on the goal of detecting observations with novel content, which can alert us to artifacts in the data set or, potentially, the discovery of previously unknown phenomena. To aid in interpreting and diagnosing the novel aspect of these selected observations, we recommend the use of novelty detection methods that generate explanations. In the context of large image data sets, these explanations should highlight what aspect of a given image is new (color, shape, texture, content) in a human-comprehensible form. We propose DEMUD-VIS, the first method for providing visual explanations of novel image content by employing a convolutional neural network (CNN) to extract image features, a method that uses reconstruction error to detect novel content, and an up-convolutional network to convert CNN feature representations back into image space. We demonstrate this approach on diverse images from ImageNet, freshwater streams, and the surface of Mars.Comment: Under Revie

    Semi-Supervised Eigenbasis Novelty Detection

    Get PDF
    Recent discoveries in high-time-resolution radio astronomy data have focused attention on a new class of events. Fast transients are rare pulses of radio frequency energy lasting from microseconds to seconds that might be produced by a variety of exotic astrophysical phenomena. For example, X-ray bursts, neutron stars, and active galactic nuclei are all possible sources of short-duration, transient radio signals. It is difficult to anticipate where such signals might appear, and they are most commonly discovered through analysis of high-time- resolution data that had been collected for other purposes. Transients are often faint and difficult to detect, so improved detection algorithms can directly benefit the science yield of all such commensal monitoring. A new detection algorithm learns a low-dimensional linear manifold for describing the normal data. High reconstruction error indicates a novel signal that does not match the patterns of normal data. One unsupervised portion of the manifold model adapts its representation in response to recent data. A second supervised portion of the model is made of a basis trained in advance using labeled examples of RFI; this prevents false positives due to these events. For a linear model, an orthonormalization operation is used to combine these bases prior to the anomaly detection decision. Another novel aspect of the approach lies in combining basis vectors learned in an unsupervised, online fashion from the data stream with supervised basis vectors learned in advance from known examples of false alarms. Adaptive, data-driven detection is achieved that is also informed by existing domain knowledge about signals that may be statistically anomalous, but are not interesting and should therefore be ignored. The method was evaluated using data from the Parkes Multibeam Survey. This data set was originally collected to search for pulsars, which are astronomical sources that emit radio pulses at regular periods. However, several non-pulsar anomalies have recently been discovered in this dataset, making it a compelling test case. By explicitly filtering known false alarm patterns, the approach yields significantly better performance than current transient detection methods

    Confidence-Based Feature Acquisition

    Get PDF
    Confidence-based Feature Acquisition (CFA) is a novel, supervised learning method for acquiring missing feature values when there is missing data at both training (learning) and test (deployment) time. To train a machine learning classifier, data is encoded with a series of input features describing each item. In some applications, the training data may have missing values for some of the features, which can be acquired at a given cost. A relevant JPL example is that of the Mars rover exploration in which the features are obtained from a variety of different instruments, with different power consumption and integration time costs. The challenge is to decide which features will lead to increased classification performance and are therefore worth acquiring (paying the cost). To solve this problem, CFA, which is made up of two algorithms (CFA-train and CFA-predict), has been designed to greedily minimize total acquisition cost (during training and testing) while aiming for a specific accuracy level (specified as a confidence threshold). With this method, it is assumed that there is a nonempty subset of features that are free; that is, every instance in the data set includes these features initially for zero cost. It is also assumed that the feature acquisition (FA) cost associated with each feature is known in advance, and that the FA cost for a given feature is the same for all instances. Finally, CFA requires that the base-level classifiers produce not only a classification, but also a confidence (or posterior probability)

    Algorithms for Learning Preferences for Sets of Objects

    Get PDF
    A method is being developed that provides for an artificial-intelligence system to learn a user's preferences for sets of objects and to thereafter automatically select subsets of objects according to those preferences. The method was originally intended to enable automated selection, from among large sets of images acquired by instruments aboard spacecraft, of image subsets considered to be scientifically valuable enough to justify use of limited communication resources for transmission to Earth. The method is also applicable to other sets of objects: examples of sets of objects considered in the development of the method include food menus, radio-station music playlists, and assortments of colored blocks for creating mosaics. The method does not require the user to perform the often-difficult task of quantitatively specifying preferences; instead, the user provides examples of preferred sets of objects. This method goes beyond related prior artificial-intelligence methods for learning which individual items are preferred by the user: this method supports a concept of setbased preferences, which include not only preferences for individual items but also preferences regarding types and degrees of diversity of items in a set. Consideration of diversity in this method involves recognition that members of a set may interact with each other in the sense that when considered together, they may be regarded as being complementary, redundant, or incompatible to various degrees. The effects of such interactions are loosely summarized in the term portfolio effect. The learning method relies on a preference representation language, denoted DD-PREF, to express set-based preferences. In DD-PREF, a preference is represented by a tuple that includes quality (depth) functions to estimate how desired a specific value is, weights for each feature preference, the desired diversity of feature values, and the relative importance of diversity versus depth. The system applies statistical concepts to estimate quantitative measures of the user s preferences from training examples (preferred subsets) specified by the user. Once preferences have been learned, the system uses those preferences to select preferred subsets from new sets. The method was found to be viable when tested in computational experiments on menus, music playlists, and rover images. Contemplated future development efforts include further tests on more diverse sets and development of a sub-method for (a) estimating the parameter that represents the relative importance of diversity versus depth, and (b) incorporating background knowledge about the nature of quality functions, which are special functions that specify depth preferences for features

    Tracking the Martian CO2 Polar Ice Caps in Infrared Images

    Get PDF
    Researchers at NASA s Jet Propulsion Laboratory have developed a method for automatically tracking the polar caps on Mars as they advance and recede each year (see figure). The seasonal Mars polar caps are composed mainly of CO2 ice and are therefore cold enough to stand out clearly in infrared data collected by the Thermal Emission Imaging System (THEMIS) onboard the Mars Odyssey spacecraft. The Bimodal Image Temperature (BIT) histogram analysis algorithm analyzes raw, uncalibrated data to identify images that contain both "cold" ("polar cap") and "warm" ("not polar cap") pixels. The algorithm dynamically identifies the temperature that separates these two regions. This flexibility is critical, because in the absence of any calibration, the threshold temperature can vary significantly from image to image. Using the identified threshold, the algorithm classifies each pixel in the image as "polar cap" or "not polar cap," then identifies the image row that contains the spatial transition from "polar cap" to "not polar cap." While this method is useful for analyzing data that has already been returned by THEMIS, it has even more significance with respect to data that has not yet been collected. Instead of seeking the polar cap only in specific, targeted images, the simplicity and efficiency of this method makes it feasible for direct, onboard use. That is, THEMIS could continuously monitor its observations for any detections of the polar-cap edge, producing detections over a wide range of spatial and temporal conditions. This effort can greatly contribute to our understanding of long-term climatic change on Mars

    Collaborative Supervised Learning for Sensor Networks

    Get PDF
    Collaboration methods for distributed machine-learning algorithms involve the specification of communication protocols for the learners, which can query other learners and/or broadcast their findings preemptively. Each learner incorporates information from its neighbors into its own training set, and they are thereby able to bootstrap each other to higher performance. Each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. After being seeded with an initial labeled training set, each learner proceeds to learn in an iterative fashion. New data is collected and classified. The learner can then either broadcast its most confident classifications for use by other learners, or can query neighbors for their classifications of its least confident items. As such, collaborative learning combines elements of both passive (broadcast) and active (query) learning. It also uses ideas from ensemble learning to combine the multiple responses to a given query into a single useful label. This approach has been evaluated against current non-collaborative alternatives, including training a single classifier and deploying it at all nodes with no further learning possible, and permitting learners to learn from their own most confident judgments, absent interaction with their neighbors. On several data sets, it has been consistently found that active collaboration is the best strategy for a distributed learner network. The main advantages include the ability for learning to take place autonomously by collaboration rather than by requiring intervention from an oracle (usually human), and also the ability to learn in a distributed environment, permitting decisions to be made in situ and to yield faster response time

    Multiple-Beam Detection of Fast Transient Radio Sources

    Get PDF
    A method has been designed for using multiple independent stations to discriminate fast transient radio sources from local anomalies, such as antenna noise or radio frequency interference (RFI). This can improve the sensitivity of incoherent detection for geographically separated stations such as the very long baseline array (VLBA), the future square kilometer array (SKA), or any other coincident observations by multiple separated receivers. The transients are short, broadband pulses of radio energy, often just a few milliseconds long, emitted by a variety of exotic astronomical phenomena. They generally represent rare, high-energy events making them of great scientific value. For RFI-robust adaptive detection of transients, using multiple stations, a family of algorithms has been developed. The technique exploits the fact that the separated stations constitute statistically independent samples of the target. This can be used to adaptively ignore RFI events for superior sensitivity. If the antenna signals are independent and identically distributed (IID), then RFI events are simply outlier data points that can be removed through robust estimation such as a trimmed or Winsorized estimator. The alternative "trimmed" estimator is considered, which excises the strongest n signals from the list of short-beamed intensities. Because local RFI is independent at each antenna, this interference is unlikely to occur at many antennas on the same step. Trimming the strongest signals provides robustness to RFI that can theoretically outperform even the detection performance of the same number of antennas at a single site. This algorithm requires sorting the signals at each time step and dispersion measure, an operation that is computationally tractable for existing array sizes. An alternative uses the various stations to form an ensemble estimate of the conditional density function (CDF) evaluated at each time step. Both methods outperform standard detection strategies on a test sequence of VLBA data, and both are efficient enough for deployment in real-time, online transient detection applications

    Injecting Artificial Memory Errors Into a Running Computer Program

    Get PDF
    Single-event upsets (SEUs) or bitflips are computer memory errors caused by radiation. BITFLIPS (Basic Instrumentation Tool for Fault Localized Injection of Probabilistic SEUs) is a computer program that deliberately injects SEUs into another computer program, while the latter is running, for the purpose of evaluating the fault tolerance of that program. BITFLIPS was written as a plug-in extension of the open-source Valgrind debugging and profiling software. BITFLIPS can inject SEUs into any program that can be run on the Linux operating system, without needing to modify the program s source code. Further, if access to the original program source code is available, BITFLIPS offers fine-grained control over exactly when and which areas of memory (as specified via program variables) will be subjected to SEUs. The rate of injection of SEUs is controlled by specifying either a fault probability or a fault rate based on memory size and radiation exposure time, in units of SEUs per byte per second. BITFLIPS can also log each SEU that it injects and, if program source code is available, report the magnitude of effect of the SEU on a floating-point value or other program variable
    corecore